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Abstract Flexible discrete-time per-capita-growth-rate
models accommodating a variety of density-dependent
relationships offer parsimonious explanations for the
variation of population abundance through time. However,
the accuracy of standard approaches to parameter estima-
tion and confidence interval construction for such models
has not been explored in a generalized setting or with
consideration of limited sample sizes typical for ecology.
Here, we use simulated data to quantify the relative effects
of sample size, population perturbations, and environmental
stochasticity on statistical inference. We focus on the key
parameters that inform population dynamic predictions in a
generalized Beverton–Holt model. We find that reliable
parameter estimation requires data spanning ranges where
both low and high density dependence act. However, the

asymptotic distribution of the likelihood ratio test statistic
can be fairly accurate for constructing confidence regions
even when point estimation is poor. Consideration of the
joint profile likelihood surface is shown to be useful for
assessing reliability of point estimates and dynamical
population predictions.
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Introduction

Time series analysis has emerged as a fundamental
approach to understanding core questions in population
ecology (Bjornstad and Grenfell 2001). One such scientific
endeavor, the identification of patterns in time series data
that are consistent with population regulation, has particu-
larly benefited from this approach. For example, theoretical
population models without density dependence predict
unbounded growth or decline and the simplest models
capturing long-term dynamics in regulated populations
must include a term that reflects density-dependent influ-
ences on population rates of change (Turchin 1995). Testing
theoretical models against time series data with statistical
modeling and inference is important for addressing central
questions about the way in which density dependence acts,
even in the face of limited sample sizes and noisy data, and
motivates the research here.

The starting point for evaluating the way in which
density dependence acts is a time series of observed
densities (or a proxy) NT ¼ ntf gTt¼1 of length T, where nt
is the density (proxy) of individuals in a population at time

Theor Ecol (2008) 1:221–229
DOI 10.1007/s12080-008-0022-4

Electronic supplementary material The online version of this article
(doi:10.1007/s12080-008-0022-4) contains supplementary material,
which is available to authorized users.

L. Polansky (*) : P. de Valpine :W. M. Getz
Department of Environmental Science, Policy, and Management,
University of California,
137 Mulford Hall,
Berkeley, CA 94720-3112, USA
e-mail: leop@nature.berkeley.edu

J. O. Lloyd-Smith
Center for Infectious Disease Dynamics,
Pennsylvania State University,
University Park, PA 16802, USA

J. O. Lloyd-Smith
Department of Ecology and Evolutionary Biology,
University of California,
Los Angeles, CA 90095-1606, USA

http://dx.doi.org/10.1007/s12080-008-0022-4


t. A simple stochastic framework for relating nt+1 to nt that
includes a general notion of density dependence is given by

ntþ1 ¼ rntg ntð Þevt ; ð1Þ
where the density-independent growth rate parameter r is
the product of the per capita birth rate (young born per adult
per generation) and the probability of survival from birth to
maturity, g(nt) accounts for the effects of density and νt is as
commonly assumed (e.g., Dennis and Taper 1994) a
normally distributed random variable representing environ-
mental stochasticity with mean μ=0 and standard deviation
σ>0. The product rg(n) is sometimes referred to as the per-
capita-growth-rate (pgr) curve, where r is the density-
independent component and g(n) a density-dependent
modifier that may take a variety of forms. We refer to the
region where g(n) is close to one, for small n, as the
(approximately) density-independent region.

With increased computing power and availability of long-
term datasets, population ecologists are beginning to
consider general models for g(n) and aiming to estimate the
shape as well as the strength of density dependence in
population studies (Bellows 1981; Myers et al. 1999; Saether
et al. 2000, 2002a, b, 2007; Sibly et al. 2005; Owen-Smith
2006). Generalized density-dependent models are highly
flexible in describing the shape of the decline of the pgr
curve with increasing population density and can increase
realism substantially by allowing the effects of density
dependence to set in around some critical population size
(Fig. S1; Bellows 1981; Getz 1996). Using least-squares
methods to compare the fits of several density-dependent
models, including both general and restricted Ricker and
Beverton–Holt (BH) models, Bellows (1981) concluded that
the generalized BH models most often described a wide
range of insect populations but did not expand the research
to address general issues of statistical inference for such
models.

Efforts to estimate point values and confidence inter-
vals for the parameters of generalized density-dependent
models face several recognized challenges: observation
error (Doncaster 2006; Freckleton et al. 2006), model
misspecification (Getz and Lloyd-Smith 2006), lack of
informative data (Myers et al. 1999), and sample size
(Saether et al. 2000). In this paper, we focus on the issues
embodied in the latter two concerns using frequentist
likelihood methods. To investigate rates of convergence of
parameter estimates for models with form given by Eq. 1,
we choose a generalized BH density-dependent model
(described below). In particular, we examine how different
true pgr curves, sample sizes, levels of environmental
stochasticity σ, and population perturbations affect statisti-
cal inference on the growth rate and shape parameters in a
generalized BH model of density dependence. Our qualita-
tive findings will hold generally for other common models

of density dependence, including the Ricker, theta-logistic,
and Gompertz models, because the asymptotic distribution-
al results discussed below apply to biologically plausible
density-dependent models (i.e., the pgr decreases with
increased density) of the form of Eq. 1 which define
stationary distributions and are differentiable with respect to
their parameters (Tong 1990).

Model

The generalized BH density-dependent model has a long
history in population ecology (e.g., Maynard Smith and
Slatkin 1973; Bellows 1981; Getz 1996) and has a close
relationship to the continuous-time logistic growth model
(Turchin 2003). A generalized BH density-dependent
process defines g(n) as

g nð Þ ¼ Kg= Kg þ ngð Þ ð2Þ

where K is the half-saturation parameter that determines the
density of n at which the change g′(n) is maximized, and g>
0 is a parameter controlling the shape of density dependence.
Equations 1 and 2 define a stochastic process satisfying
properties guaranteeing the existence of a stationary distri-
bution, the long-term limiting distribution of nt (Tong 1990).

In addition to a fixed-point equilibrium at n* ¼ K r � 1ð Þ1=g ,
the deterministic model (σ=0) defined by Eq. 1 with g(n) as
in Eq. 2 exhibits a rich variety of dynamics in its population
trajectories and has a relatively well-understood phase
plane that includes both fixed-point and cyclic attractors
that depend on the values of r and g (Maynard Smith and
Slatkin 1973; Getz 1996; Schoombie and Getz 1998);
bifurcation from damped to stable oscillations occurs at the
boundary r ¼ 2= g� 2ð Þ (Getz 1996).

Statistical inference

Likelihood-based statistical inference is used widely in
ecology (Hilborn and Mangel 1997) and is the approach we
take here to understand parameter estimation properties of
the generalized BH model with sample sizes and some
scenarios typical for ecology. Use of the likelihood to
estimate parameters, ascertain confidence intervals, and test
hypotheses rests on a rigorous foundation based on
asymptotic theory (Severini 2000). We follow convention
in denoting the vector of model parameters by θ=(r, K, g,
σ) in the space θ of all possible parameter values (nonzero
μ can be expressed as μ=0 with an appropriate change in r,
so for the remainder of the paper and without loss of
generality μ is fixed at 0 in all simulation and estimation
equations).
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Given a time series of population densities NT, let xt=
loge(nt). Assuming the random variables ν1, ν2,... in Eq. 1
are independent and normally distributed with μ=0 and
standard deviation σ>0, the log-likelihood function for the
model of Eqs. 1 and 2 is given by

‘ θð Þ¼ T � 1ð Þ loge
1

s
ffiffiffiffiffi
2p

p
� �

� 1

2s2

�
XT�1

t�1

½xtþ1�loge rð Þ� xtþ loge 1þ exp xtð Þ=KÞ+ð Þð �2:

ð3Þ

The maximum likelihood (ML) estimators of the
structural parameters r, K, and g obtained by maximizing
Eq. 3 are the same as those obtained by a least-squares fit of
the one-step-ahead prediction error.

Typically discussed in the context of independent,
identically distributed data, several desirable properties
(e.g., consistency, efficiency, and asymptotic normality) of
the ML estimate bq also hold for non-linear discrete-time
models such as Eq. 3 (Tong 1990). In particular, using
Taylor series approximations of ‘ qð Þ around the true value
θ0=(r0, γ0, K0, σ0) and large-sample convergence, it can be
shown that

W ¼ 2 ‘ bq
� �

� ‘ q0ð Þ
� �

� #2d ; ð4Þ

where d is the number of free parameters in the model
(Tong 1990). Thus, for example, given an estimate bq and a
desired test size α, a (1−α) confidence region is defined as
the set of θ such that W is less than the (1−α) quantile of
the chi-squared distribution with d degrees of freedom.
Related asymptotic results (e.g., the Rao score or Wald
statistics) approximate the likelihood surface as quadratic,
with subsequent construction of confidence intervals based
on an estimate of the parameter variance–covariance matrix
at the ML point (Severini 2000). Such methods result in
elliptical confidence regions and turn out to be a liability for
the model considered here.

Testing large-sample results on realistic sample sizes

We simulated data with known parameter values (Table 1)
to evaluate the accuracy of ML point estimates using Eq. 3
and confidence regions using Eq. 4. The source of variation
in population fluctuations (e.g., external noise vs. over-
compensatory population growth rates) and pgr data at low
population densities are expected to be important for
parameter estimation (Schaffer et al. 1986; Kendall 2001;
Saether et al. 2002b). The impacts of both are considered in
this study. Throughout, the fixed-point equilibrium of the
deterministic trajectories of the generating model was kept
constant at n*=1 by setting the half-saturation parameter
K0 ¼ r0 � 1ð Þ1=g0 for different choices of r0 and g0.

We initially focus on data generated from all possible
(r0, g0) pairs where r0 takes values from the set {1.5, 2, 2.5,
3, 3.5, 4, 4.5, 5} and g0 takes values from the set {1, 1.5, 2,
2.5, 3, 3.5, 4, 4.5, 5} (Table 1). Each pair uniquely
determines the stability of n* (Getz 1996) with stronger
instability typically generating larger variance of the
stationary distribution. These choices of (r0, g0) focus on
biologically realistic systems (n*>0) in which the form of
density dependence is allowed to be initially concave up
(relatively strong) or down (relatively weak; Figs. S1 and
S2) and such that the overall effects of density dependence
are both weak and strong around n* and result in either
absent, damped, or persistent oscillations in the determin-
istic population trajectories (Fig. S2). Other choices for the
values of r0 and g0 would likely produce similar parameter
estimation properties for bq as those values of r0 and g0
considered here as a result of similar deterministic
predictions about population trajectories. The set of (r0,
g0) values considered here also spans the range of least-
squares parameter estimates for several insect populations
(Bellows 1981). To emphasize the effect of deterministic
density-dependent variation, we set the environmental
stochasticity at a relatively low value σ0=0.05.

Not all of the stationary distributions for the scenarios
above are expected to contain population densities that are
sufficiently low so that the influence of density-independent
growth is present. Thus, we considered two additional

Table 1 Parameter values used to generate different datasets with Eqs. 1 and 2

Parameters Data

Stationary with small environmental stochasticity Stationary with large environmental stochasticity Perturbed

r0 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 3 3
g0 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 1, 5 1, 5
σ0 0.05 0.25 0.05

For each unique combination of parameters across the rows of each column and for each value of T equal to10, 20, and 50, we generated 300 time
series to obtain data NT . K0 was set at r0 � 1ð Þ1=g0 in all simulations to keep n*=1. See text for a discussion of the biological implications for each
set of generating parameter values (r0, g0, K0, σ0).
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sources of variation in time series data NT: increased
environmental stochasticity with σ0=0.25 and perturba-
tions, described below, with σ0=0.05 (Table 1). For the
other parameters of the generating model, we chose two (r0,
g0) pairs, (3, 1) and (3, 5), to represent the stable and
unstable regions of parameter space, respectively. For r0=3,
when g0=1 the attractor has a stable equilibrium point at n*
and for g0=5 the attractor is cyclic with period three, a
minimum population density of 0.23n*, and a maximum
population density of 1.57n*.

The two choices for σ0 gave a feel for the relative role of
environmental stochasticity in the types of models and data
considered here. The relationship between the one-step-
ahead expected population trajectory and the stochastic one,
with the parameters chosen here, is that approximately 68%
of the time the value of nt+1 will be within 100σ0% of its
expected value, and approximately 95% of the time it will
be within 200σ0% of the expected value.

For each of the generating models discussed above and
summarized in Table 1, we generated 300 time series of
length 1,050, reusing the stochastic terms when changing
the structural parameters r0 and γ0 to keep the environmen-
tal stochasticity constant across changes in the deterministic
component of population variation. The initial population
density n0 for each simulation was set at 0.1, corresponding
to 10% of the deterministic fixed-point equilibrium.
Sampling the final 10, 20, and 50 values produce a time
series associated with the stationary distribution. Sampling
from the first 10, 20, and 50 points provided a time series
associated with a return toward the stationary distribution
following a perturbation. The choices of sample size were
motivated by data in the Global Population Dynamics
Database (National Environment Research Council (NERC)
Centre for Population Biology 1999) from which 3,269
time series considered by (Sibly et al. 2005) had mean
length 16.5 and a standard deviation of 14.2.

Maximizing ‘ θð Þ in Eq. 3 for each sample gave 300
independent ML point estimates for each scenario. We
maximized Eq. 3 using both the Nelder–Mead and BFGS
algorithms as implemented in R 2.6.0 (R Development
Core Team) with multiple restarts. The robustness of this
approach for finding the maximum of Eq. 3, sometimes
difficult when the likelihood surfaces had extended ridges
of similar values around the maximum, was tested using
several diagnostic runs. We evaluate point estimation
properties by calculating the bias, variance about the mean,
and the mean squared error (MSE, equal to variance plus
squared bias) of the point estimates.

To explore the efficacy of using the asymptotic distribu-
tion in Eq. 4 as a means for constructing accurate
confidence regions, we compare it with the distribution of
W formed from the 300 resulting ML estimates for each
scenario using the two representative (r0, g0) pairs. In this

case, the degrees of freedom d equals 4, corresponding to
the number of parameters being estimated. By calculating
the proportion of samples for which the theoretically
defined confidence interval contained the true parameter
value, we obtained a measure of the actual coverage for
confidence intervals calculated using Eq. 4.

The joint profile likelihood of two parameters in a
multiparameter model is useful for interpreting the overall
estimation problem and the shape of the confidence regions
(Tong 1990). This surface of values is constructed by
varying the two parameters of interest over a grid of values
and repeatedly maximizing ‘ θð Þ in the remaining two free
parameters. Given a relatively accurate approximation of the
likelihood ratio test (LRT) statistic to its limiting distribu-
tion in Eq. 4, it is possible to approximate confidence
regions at specified p values, while also detecting likelihood
ridges, by transforming this surface accordingly (i.e., taking
twice the difference between the value ‘ bθ

� �
and each of

the maximized joint profile likelihood values) and plotting
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Fig. 1 MSE contour plots (shading) and the bifurcation boundary
(line) from damped to sustained oscillations (lower left and upper
right, respectively) for point estimates of r̂ in panel a and bg in panel b
from stationary time series with T=20 and σ0=0.05. The values of the
generating pair (r0, gγ0) are given on the y and x axes
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contours at levels defined by quantiles of a chi-square
distribution with 2 df.

Results

The type of deterministic population dynamics defined by
the values r0 and g0 had substantial effects on point
estimation properties (Fig. 1; Tables S1–S18 of the Support-
ing Information). Notably, as the (r0, g0) pair moves from the

stable region r0 < 2= g0 � 2ð Þ to the bifurcation line (i.e.,
deterministic oscillations around n* take longer to dampen
out), estimates of r0 become increasingly worse and
estimates of g0 increasingly better. Sharp improvement in
estimation of both parameters is made when (r0, g0) pairs
produce sustained population fluctuations.

Focusing on the representative (r0, g0) pairs (3, 1) and
(3, 5) used to evaluate the importance of other sources of
data variation, parameter estimation was also highly
improved when populations experienced perturbations and
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Fig. 2 Tukey box plots with
whiskers extending to 1.5 times
the interquartile range of natural
logarithmic-transformed point
estimates of r̂ (panels a and b)
and bg (panels c and d), for the
representative (r0, gγ0) pairs
(3, 1) and (3, 5). Open circles
give locations of values beyond
1.5 times the interquartile range.
The perturbed data were simu-
lated with σ0=0.05. Sets of three
correspond to sample size T
values shown above each panel.
Panel column a, c uses gγ0=1
and panel column b and d uses
gγ0=5 to generate data (see
Table 1). Asterisks indicate that
the plot omitted inclusion of
negative estimates of gγ0, which
only occurred with stationary
data, once with σ0=0.05 and
twice with σ0=0.25. The
denotes the natural logarithmic-
transformed mean of all
parameter estimates, and the
thick horizontal line is at the
median of transformed parame-
ter estimates included in the
plot. The thin horizontal lines
are drawn at the true values
of r0 or gγ0
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a subsequent return to growth rates typical of the stationary
distribution (Fig. 2, Table S19), regardless of the g0 value.
When populations experience temporal changes that cover
both weak and strong density-dependent effects (perturbed
samples or (r0, g0)=(3, 5) at either level of σ0), point
estimation is improved dramatically (Table S19, Fig. 2); the
likelihood function has a well-defined global maximum in
the region of the correct parameter estimates (Fig. 3a, b), and
the covariance between structural parameters is small (Table
S20). In contrast, with the absence of large perturbations or
persistent cycles in the endogenous dynamics ((r0, g0)=(3, 1)
at either level of σ0), ML point estimates could be extremely
erroneous (Table S19, Fig. 2), are associated with a ridge of
highly similar likelihood values over a wide range of
parameters (Fig. 3c, d), and exhibit relatively strong
covariance between structural parameters (Table S21).

Sample size had some influence on overall character-
istics of point estimation, particularly for population data
without endogenous cycles or external perturbations
(Tables S1–S19, Fig. 2). The most pronounced effect was
the removal of especially poor estimates, which reduced the
variance and MSE considerably (Fig. 2), but the problem of
flat likelihood surfaces containing ridges of similar likeli-
hood values (Fig. 3c, d) remained. Increasing sample size
also removed obvious multimodalities in the likelihood

surface for three cases in which stochastic impacts created
unusual sequences of data points in short time series (T=10)
for which bθ describes a pgr that increases with density.

With weak regulation (r0, g0)=(3, 1) and NT obtained
from a stationary distribution, increased levels of noise
had opposite effects on parameter estimation properties for
r0 and g0, yielding worse estimates for r0 but better
estimates for g0 (Table S19, Fig. 2), similar to the effect of
increased instability in n*. However, the distribution of
population densities driven by environmental stochasticity
alone (at the levels and sample sizes considered here) was
not sufficient to produce informative estimates of pgr
curves. For the already informative perturbed or cyclic
populations, increased levels of stochasticity had the
expected effect of worsening estimation of both r0 and g0
(Table S19, Fig. 2).

The plots in Fig. 4 compare the accuracy of using
quantiles from the theoretical distribution of Eq. 4 to define
coverage probabilities. In all scenarios, nominal (approxi-
mated) coverage was not too far from the actual coverage
for the 0.95 level but could substantially overestimate
actual coverage at smaller levels for some scenarios with
smaller sample sizes and larger σ0. Nonstationary data had
the expected effect of worsening approximations using the
asymptotic derived distribution in Eq. 4.
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Discussion

The roles of deterministic complexity, noise, perturbations,
and model choice on detecting biological processes from
time series has a rich and valuable history in ecology (e.g.,
Schaffer et al. 1986; Nychka et al. 1992; Ellner and Turchin
1995; Kendall 2001), often focusing on the identification of
system measures such as Lyapunov exponents under
different combinations of these factors. In particular, for
detecting the presence of density dependence, Murdoch
(1994) points out that observed population densities far from
the carrying capacity are needed to detect factors regulating
growth. In this research, we extend these types of results in
several ways. First, we explicitly consider the relationship
between sample sizes typical of ecological time series to both
point convergence of ML parameter estimates (Eq. 3) and
distributional convergence of the LR test statistic (Eq. 4).
Second, we quantify how different levels of noise affect
parameter estimates for a particular model of density

dependence. Finally, we show that an explicit consideration
of the joint profile likelihood surface, as opposed to a
quadratic approximation giving an elliptical region such as
from a Wald test, provides insight into the estimation
problem and the uncertainty in parameter estimates.

Our tests of the performance of statistical inference under
different sources of variation in the data revealed that the
primary determinant influencing parameter point estimation
is not sample size or stationarity (i.e., all θ0 considered here
produce stationary distributions) of the sample but rather the
variance of observed population sizes. Datasets derived from
populations with variation driven by endogenous processes
or from a population approaching the stationary distribution
following a perturbation can be expected to yield estimates
with superior properties (lower bias and variance, narrower
confidence regions) to those obtained from longer datasets
with lower variation. The negative effects of environmental
stochasticity and weak density-dependent regulation on
estimation of the shape parameter in the theta-logistic model
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and 5, respectively, where pan-
els a and b give the results for
data obtained with stationary
data and σ0=0.05; panels c and
d give the results for data
obtained with stationary data
and σ0=0.25; panels e and f
give the results for data obtained
with perturbed data and σ0=
0.05. Points near the identity
line indicate that p values de-
fined by the associated theoreti-
cal quantiles in the distribution
of Eq. 4 are accurate approxi-
mations of true coverage
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have been found in several previous case studies (Saether
et al. 2000, 2002a, 2007), but shape estimation has not been
quantified in relationship to sample size until now.

A cluster of uninformative data (Schaffer et al. 1986)
often emerges when noise is added to a dynamical system
with a fixed-point equilibrium. Consider such a cluster of
pgr data at approximately the constant a across the different
values in NT. The modeled pgr curve is rKg= Kg þ N g

tð Þ and
therefore should be ≈a for t=1,…,T−1. Thus, for K<<1 and
r ¼ a=Kg , the modeled pgr is � a=N g

t . Choosing γ to be
sufficiently large (the exact choice depending on the range
of NT and a), the modeled pgr curve will be flat through the
cluster of pgr data. Hence, a continuum of (r, K) estimates
can produce similar pgr curves that have approximately the
same support, allowing estimates of r0 that are essentially
arbitrarily large as estimates of K0 approach zero (Fig. 3c).

It is encouraging that the limiting distribution of the LRT
statistic (Eq. 4) is often a fairly accurate approximation and
therefore useful for constructing confidence limits with
limited sample sizes. In contrast, methods for constructing
confidence intervals that assume elliptical contours, such as
the score or Wald statistics (Severini 2000), would be
expected to provide poor approximations of coverage given
the absence of an ellipsoidal likelihood surface in the region
of the ML estimate.

Statistical inference based on Bayesian methods is an
alternative approach to evaluate density-dependent popula-
tion models (de Valpine and Hilborn 2005; Saether et al.
2007; Lillegard et al. 2008). For the relatively simple model
studied here, Bayesian analyses using uninformative prior
parameter distributions would be expected to give similar
results, on average. For data resulting in elongated ridges in
the likelihood surface (Fig. 4a, c), posterior parameter
distributions would have inaccurate location (e.g., mean,
median, or mode) summaries of the “true” parameter and
probability mass distributed over a wide interval. For data
resulting in a likelihood surface with a well-defined
unimodal peak, posterior parameter distributions would be
expected to give accurate location summaries, have highly
concentrated probability mass, and be approximately normal.

Population biologists have realized the importance of
employing more complicated stochastic models accommo-
dating multiple sources of stochastic variability arising, for
example, at both the process level and additionally through
observation error (de Valpine and Hastings 2002; de Valpine
and Hilborn 2005; Dennis et al. 2006; Saether et al. 2007;
Lillegard et al. 2008). For models of g(n) that do not allow
transformation to linear state-space models, parameter
estimation can rely on simulation based approaches to
estimate Bayesian posterior distributions (Saether et al.
2007) or numerical procedures such as those described by
de Valpine and Hastings (2002) and Kitagawa (1987) to

obtain and maximize likelihood values. One natural
direction of future research to extend the findings here
would be to use stochastic simulations to evaluate and
compare frequentist and Bayesian methods under different
scenarios of process model complexity, environmental
stochasticity, and observation error.
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